Competitive Opportunities for Native Plants

Invasive *Tamarix ramosissima*

Establishment Ecology

Anna A. Sher, Ph.D.
Director of Research, Denver Botanic Gardens
Assistant Professor, University of Denver
acknowledgements

Diane Marshall, University of New Mexico

John P. Taylor, Bosque del Apache NWR
Disturbance and invasion

- Often facilitates invasion
 - because native competitors removed
- What about ecosystems adapted to disturbance?
 - natives may be dependent on disturbance
 - = management dilemma
Threatened *Populus*

- Stimulated by flooding disturbance
- Tamarix also stimulated by flood
- How do these species interact after flooding?
Specific Questions

1. Can *Populus* establish by seed with *Tamarix* seed present?
2. How consistent are these results?
3. What are the implications for management?
The Approach

- Field observations
- Testing hypotheses developed in the field under controlled conditions
component #1: Field surveys

“What environmental factors explain species distributions?”
Location of field sites in New Mexico:

- Escondida
- Bosque del Apache, Wildlife refuge
A cleared, experimental plot that has been flooded
Clearing the *Tamarix*

Photos by Tim Carlson
Bosque del Apache

- seedlings germ. 1993
- indiv. tagged 1994
- abiotic: elevation, salinity, NH$_4$, PO$_4$, soil texture, plot location
Change in Densities over Time

- **Tamarix**
- **Populus**

![Graph showing change in densities over time with specific dates and plot density/m² scale.](image-url)
Regression of Populus against Tamarix at the first sampling period

R^2 = 0.39, p < 0.001
Regression of Populus against Tamarix at 38 months

\[R^2 = 0.11; \ p < 0.03 \]
Discriminant Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>CAN1 P<0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial Tamarix density</td>
<td>-0.0325</td>
</tr>
<tr>
<td>initial Populus density</td>
<td>1.2462</td>
</tr>
<tr>
<td>soil texture</td>
<td>-0.2089</td>
</tr>
<tr>
<td>elevation</td>
<td>-0.0168</td>
</tr>
<tr>
<td>(v) EC/salinity</td>
<td>0.3099</td>
</tr>
<tr>
<td>(NH_4)</td>
<td>-0.1462</td>
</tr>
<tr>
<td>(PO_3)</td>
<td>0.2537</td>
</tr>
</tbody>
</table>
Discriminant Analysis

Canonical axis 1

Canonical axis 2

Populus

Mixed

Tamarix
<table>
<thead>
<tr>
<th></th>
<th>POPULUS</th>
<th>MIXED</th>
<th>TAMARIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamarix t=0</td>
<td>557.8</td>
<td>193.2</td>
<td>171.26</td>
</tr>
<tr>
<td>Populus t=0</td>
<td>21.7</td>
<td>24.6</td>
<td>3.0</td>
</tr>
<tr>
<td>SOIL TEX.</td>
<td>2.0</td>
<td>1.6</td>
<td>3.04</td>
</tr>
<tr>
<td>ELEVATION</td>
<td>-0.04</td>
<td>0.215</td>
<td>-0.02</td>
</tr>
<tr>
<td>SALINITY</td>
<td>39.89</td>
<td>25.54</td>
<td>34.71</td>
</tr>
<tr>
<td>NH$_4$</td>
<td>0.477</td>
<td>0.558</td>
<td>0.751</td>
</tr>
<tr>
<td>PO$_4$</td>
<td>0.224</td>
<td>0.38</td>
<td>0.281</td>
</tr>
</tbody>
</table>
Mortality patterns

- Change in densities over time
- Relationships between species
- What causes mortality
 - presence of neighbors
 - abiotic conditions?
Heights 2nd-5th yrs

Time*species p<0.001

Date measured

mean height (cm)

- Tamarix
- Populus
<table>
<thead>
<tr>
<th>indpt var.</th>
<th>Δ height of</th>
<th>Δ height of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tamarix</td>
<td>Populus</td>
</tr>
<tr>
<td>plot</td>
<td>-2.61</td>
<td>-1.55</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>APCA1</td>
<td>0.41</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>den. t=0</td>
<td>-13.41</td>
<td>21.34</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>den. t=1 yr</td>
<td>-6.50</td>
<td>-20.03</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Regression statistics

<table>
<thead>
<tr>
<th>model</th>
<th>R^2=.60</th>
<th>p<0.001</th>
<th>R^2=.40</th>
<th>p<0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>127.17</td>
<td></td>
<td>73.19</td>
<td></td>
</tr>
</tbody>
</table>
Summary of field data

- Relationship between species change
- Highest rates of mortality for *Tamarix*
- Abiotic factors - possible role of flood
- *Tamarix* mortality, growth affected by *Populus* densities BUT...
- ...not vice-versa

Question raised by field data

Is it possible that the native species is a superior competitor as a seedling?!
component #2: competition experiments

“Is competition occurring, and how is this affected by environment?”
RESPONSE SURFACE

TAMARIX DENSITY

POPULUS DENSITY
- Germination counted 17 days (90% in first 3)
- Height measured monthly
- Final above ground biomass
Populus mass in Clay with draw down

\[R^2 = 0.46 \]
Populus mass in Sand with no draw down

![3D graph showing the relationship between Populus density and Tamarix density over mean mass (g).]
Tamarix mass in Clay with draw down

\[R^2 = 0.47 \]
Tamarix mass in Sand with no draw down

\[R^2 = 0.72 \]
Summary of Component #2

- *Populus* competitively suppresses *Tamarix*
- *Tamarix* is poor competitor, esp. against *Populus*
 - Competition intensity greatest with draw-down in high nutrient soil
Tamarix cannot compete if natives present.
- Promote natives
- Flooding disturbance
- ...may decrease invasion
Competition and plant invasions

- invasives not always competitive as seedlings
- Require disruption of native community to become established
- Importance of re-vegetation - no empty niche for invasion
Acknowledgements:

National Science Foundation
Sigma Xi
Springfield fellowship, Daylilly Society
Bosque del Apache NWR
Univesity of New Mexico